
Package ‘lifecycle’
July 27, 2019

Title Manage the Life Cycle of your Package Functions

Version 0.1.0

Description Manage the life cycle of your exported functions with
shared conventions, documentation badges, and non-invasive
deprecation warnings. The 'lifecycle' package defines four
development stages (experimental, maturing, stable, and
questioning) and three deprecation stages (soft-deprecated,
deprecated, and defunct). It makes it easy to insert badges
corresponding to these stages in your documentation. Usage of
deprecated functions are signalled with increasing levels of
non-invasive verbosity.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>= 3.2)

Imports glue,
rlang (>= 0.4.0)

Suggests covr,
crayon,
knitr,
rmarkdown,
testthat (>= 2.1.0)

Roxygen list(markdown = TRUE)

RoxygenNote 6.1.1

URL https://github.com/r-lib/lifecycle

BugReports https://github.com/r-lib/lifecycle/issues

VignetteBuilder knitr

R topics documented:
badge . 2
deprecated . 3
deprecate_soft . 3
last_warnings . 5
verbosity . 6

1

https://github.com/r-lib/lifecycle
https://github.com/r-lib/lifecycle/issues

2 badge

Index 8

badge Embed a lifecycle badge in documentation

Description

Call usethis::use_lifecycle() to import the badges in your package. Then use the lifecycle
Rd macro to insert a lifecycle badges in your documentation, with the relevant lifecycle stage as
argument:

\lifecycle{experimental}
\lifecycle{soft-deprecated}

The badge is displayed as image in the HTML version of the documentation and as text otherwise.

If the deprecated feature is a function, a good place for this badge is at the top of the topic description
(if the deprecated function is documented with other functions, it might be a good idea to extract it
in its own documentation topic to prevent confusion). If it is an argument, you can put the badge in
the argument description.

Usage

badge(stage)

Arguments

stage A lifecycle stage as a string, one of: "experimental", "maturing", "stable",
"questioning", "archived", "soft-deprecated", "deprecated", "defunct".

Details

The lifecycle{} macro is made available by adding this field to DESCRIPTION (this is done
automatically by usethis::use_lifecycle()):

RdMacros: lifecycle

The macro expands to this expression:

\Sexpr[results=rd, stage=render]{lifecycle::badge("experimental")}

Value

An Rd expression describing the lifecycle stage.

Badges

• \lifecycle{experimental}: Experimental
• \lifecycle{maturing}: Maturing
• \lifecycle{stable}: Stable
• \lifecycle{questioning}: Questioning
• \lifecycle{archived}: Archived
• \lifecycle{soft-deprecated}: Soft-deprecated
• \lifecycle{deprecated}: Deprecated
• \lifecycle{defunct}: Defunct

deprecated 3

deprecated Mark an argument as deprecated

Description

Signal deprecated argument by using self-documenting sentinel deprecated() as default argument.
It returns rlang::missing_arg(), so you can test whether the user supplied the argument with
rlang::is_missing() (see examples).

Usage

deprecated()

Magical defaults

We recommend importing lifecycle::deprecated() in your namespace and use it without the
namespace qualifier.

In general, we advise against such magical defaults, i.e. defaults that cannot be evaluated by the
user. In the case of deprecated(), the trade-off is worth it because the meaning of this default is
obvious and there is no reason for the user to call deprecated() themselves.

Examples

foobar_adder <- function(foo, bar, baz = deprecated()) {
Check if user has supplied `baz` instead of `bar`
if (!rlang::is_missing(baz)) {

Signal the deprecation to the user
deprecate_warn("1.0.0", "foo::bar_adder(baz =)", "foo::bar_adder(bar =)")

Deal with the deprecated argument for compatibility
bar <- baz

}

foo + bar
}

foobar_adder(1, 2)
foobar_adder(1, baz = 2)

deprecate_soft Deprecate functions and arguments

Description

These functions provide three levels of verbosity for deprecated functions.

• deprecate_soft() warns only if the deprecated function is called from the global environ-
ment (so the user can change their script) or from the package currently being tested (so the
package developer can fix the package). Use for soft-deprecated functions.

https://principles.tidyverse.org/def-magical.html

4 deprecate_soft

• deprecate_warn() warns unconditionally. Use for deprecated functions.

• deprecate_stop() fails unconditionally. Use for defunct functions.

Warnings are only issued once per session to avoid overwhelming the user. See the verbosity option
to control this behaviour.

Usage

deprecate_soft(when, what, with = NULL, details = NULL, id = NULL,
env = caller_env(2))

deprecate_warn(when, what, with = NULL, details = NULL, id = NULL,
env = caller_env(2))

deprecate_stop(when, what, with = NULL, details = NULL)

Arguments

when The package version when function/argument was deprecated.

what If the deprecated feature is a whole function, the function name: "foo()". If
it’s an argument that is being deprecated, the function call should include the
argument: "foo(arg =)".

You can optionally supply the namespace: "ns::foo()". If not supplied, it is
inferred from the caller environment.

with An optional replacement for the deprecated feature. This should be a string of
the same form as what.

details The deprecation message is generated from when, what, and with. You can
additionally supply a string details to be appended to the message.

id The id of the deprecation. A warning is issued only once for each id. Defaults
to the generated message, but you should give a unique ID when the message in
details is built programmatically and depends on inputs, or when you’d like to
deprecate multiple functions but warn only once for all of them.

env The environment in which the deprecated function was called. A warning is
issued if called from the global environment. If testthat is running, a warning is
also called if the deprecated function was called from the package being tested.

This typically doesn’t need to be specified, unless you call deprecate_soft()
or deprecate_warn() from an internal helper. In that case, you need to forward
the calling environment.

Value

NULL, invisibly.

See Also

lifecycle()

last_warnings 5

Examples

A deprecated function `foo`:
deprecate_warn("1.0.0", "foo()")

A deprecated argument `arg`:
deprecate_warn("1.0.0", "foo(arg =)")

A deprecated function with a function replacement:
deprecate_warn("1.0.0", "foo()", "bar()")

A deprecated function with a function replacement from a
different package:
deprecate_warn("1.0.0", "foo()", "otherpackage::bar()")

A deprecated function with an argument replacement:
deprecate_warn("1.0.0", "foo()", "foo(bar =)")

last_warnings Display last deprecation warnings

Description

Call these helpers to see the last deprecation warnings along with their backtrace:

• last_warnings() returns a list of all warnings that occurred during the last top-level R com-
mand.

• last_warning() returns only the last.

If you call these in the console, these warnings are printed with a backtrace. Pass the simplify
argument to control the verbosity of the backtrace. It supports one of "branch" (the default),
"collapse", and "none" (in increasing order of verbosity).

Usage

last_warnings()

last_warning()

Examples

These examples are not run because `last_warnings()` does not
work well within knitr and pkgdown
Not run:

f <- function() invisible(g())
g <- function() list(h(), i())
h <- function() deprecate_warn("1.0.0", "this()")
i <- function() deprecate_warn("1.0.0", "that()")
f()

Print all the warnings that occurred during the last command:
last_warnings()

6 verbosity

Print only the last one:
last_warning()

By default, the backtraces are printed in their simplified form.
Use `simplify` to control the verbosity:
print(last_warnings(), simplify = "none")

End(Not run)

verbosity Control the verbosity of deprecation signals

Description

There are 3 levels of verbosity for deprecated functions: silence, warning, and error. Since the
lifecycle package avoids disruptive warnings, the default level of verbosity depends on the lifecycle
stage of the deprecated function, on the context of the caller (global environment or testthat unit tests
cause more warnings), and whether the warning was already issued (see the help for deprecation
functions).

You can control the level of verbosity with the global option lifecycle_verbosity. It can be set
to:

• "default" or NULL for the default non-disruptive settings.

• "quiet", "warning" or "error" to force silence, warnings or errors for deprecated functions.

Note that functions calling deprecate_stop() invariably throw errors.

Examples

if (rlang::is_installed("testthat")) {
library(testthat)

mytool <- function() {
deprecate_soft("1.0.0", "mytool()")
10 * 10

}

Forcing the verbosity level is useful for unit testing. You can
force errors to test that the function is indeed deprecated:
test_that("mytool is deprecated", {

rlang::with_options(lifecycle_verbosity = "error", {
expect_error(mytool(), class = "defunctError")

})
})

Or you can enforce silence to safely test that the function
still works:
test_that("mytool still works", {

rlang::with_options(lifecycle_verbosity = "quiet", {
expect_equal(mytool(), 100)

})

verbosity 7

})
}

Index

badge, 2

deprecate_soft, 3
deprecate_stop (deprecate_soft), 3
deprecate_stop(), 6
deprecate_warn (deprecate_soft), 3
deprecated, 3
deprecation functions, 6

last_warning (last_warnings), 5
last_warnings, 5
lifecycle(), 4

rlang::is_missing(), 3
rlang::missing_arg(), 3

verbosity, 6
verbosity option, 4

8

	badge
	deprecated
	deprecate_soft
	last_warnings
	verbosity
	Index

