Package ‘vctrs’

February 19, 2020
Title Vector Helpers
Version 0.2.3

Description Defines new notions of prototype and size that are
used to provide tools for consistent and well-founded type-coercion
and size-recycling, and are in turn connected to ideas of type- and
size-stability useful for analysing function interfaces.

License GPL-3
URL https://github.com/r-1ib/vctrs

BugReports https://github.com/r-1ib/vctrs/issues
Depends R (>=3.2)

Imports ellipsis (>= 0.2.0),
digest,
glue,
rlang (>=0.4.2)

Suggests bit64,
covr,
crayon,
generics,
knitr,
pillar (>= 1.4.1),
pkgdown,
rmarkdown,
testthat (>= 2.3.0),
tibble,
xml2,
zeallot

VignetteBuilder knitr

Encoding UTF-8

Language en-GB

LazyData true

Roxygen list(markdown = TRUE)
RoxygenNote 7.0.2

https://github.com/r-lib/vctrs
https://github.com/r-lib/vctrs/issues

2

internal-faq-ptype2-identity

R topics documented:

Index

internal-fag-ptype2-identity 2
LSt of . . . s, 4
NAME_SPEC . « « « v v v v e e e e e e e e e e e e e e e e 5
partial_factor e e 6
partial_frame 7
VEC_ASSEIT . . v v v e e e e e e e e s 7
VEC_AS_NAMES . . . & v v v v v e e e e e e e e e e e e 8
vec_bind e e 10
VEC_ C o v v v e e e e 13
VEC_ChOD . . . e e 15
VEC_COMPAIE . « . v v v v v e 15
VEC_COUNE . . . v v v v e i e 16
vec_data oL L e e 17
vec_default_cast. e 18
vec_duplicate e e 19
vec_equal L e 20
VEC_INIt . . . L e e e e e 21
vec 1S LISt L e 21
vec_match L e 22
VeC_Order e e e e e e e e e e e e e e e 23
VEC_PLYPE « v v v o e 24
vec_recycle oL 25
VEC_TEPEAL . . o v vt i i e e e e e e e e e e e e e e e e e e e 27
vec_seq along e 28
VEC_SIZE . . v v o o e e e e e e 28
vec_sSplit L 30
VEC_UNMIQUE + « & v v v v e 30
0% 31

33

internal-faq-ptype2-identity

Internal FAQ - vec_ptype2(), NULL, and unspecified vectors

Description

Promotion monoid:

Promotions (i.e. automatic coercions) should always transform inputs to their richer type to avoid
losing values of precision. vec_ptype2() returns the richer type of two vectors, or throws an
incompatible type error if none of the two vector types include the other. For example, the richer
type of integer and double is the latter because double covers a larger range of values than integer.

vec_ptype2() is a monoid over vectors, which in practical terms means that it is a well behaved
operation for reduction. Reduction is an important operation for promotions because that is how
the richer type of multiple elements is computed. As a monoid, vec_ptype2() needs an identity
element, i.e. a value that doesn’t change the result of the reduction. vctrs has two identity values,
NULL and unspecified vectors.

https://en.wikipedia.org/wiki/Monoid
https://purrr.tidyverse.org/reference/reduce.html

internal-faq-ptype2-identity 3

The NULL identity:

As an identity element that shouldn’t influence the determination of the common type of a set of
vectors, NULL is promoted to any type:

vec_ptype2(NULL, "")
#> character(0)
vec_ptype2(1L, NULL)
#> integer(0)

The common type of NULL and NULL is the identity NULL:

vec_ptype2(NULL, NULL)
#> NULL

This way the result of vec_ptype2(NULL,NULL) does not influence subsequent promotions:

vec_ptype2(
vec_ptype2(NULL, NULL),

nn

)

#> character(0)

Unspecified vectors:

In the vctrs coercion system, logical vectors of missing values are also automatically promoted to
the type of any other vector, just like NULL. We call these vectors unspecified. The special coercion
semantics of unspecified vectors serve two purposes:

1. It makes it possible to assign vectors of NA inside any type of vectors, even when they are not
coercible with logical:
x <- letters[1:5]
vec_assign(x, 1:2, c(NA, NA))
#> [1] NA NA ”C” ”d” ”e”

2. We can’t put NULL in a data frame, so we need an identity element that behaves more like a
vector. Logical vectors of NA seem a natural fit for this.

Unspecified vectors are thus promoted to any other type, just like NULL:

vec_ptype2(NA, "")

#> character(0)
vec_ptype2(1L, c(NA, NA))
#> integer(0)

Finalising common types:

vetrs has an internal vector type of class vctrs_unspecified. Users normally don’t see such
vectors in the wild, but they do come up when taking the common type of an unspecified vector
with another identity value:

vec_ptype2(NA, NA)

#> <unspecified> [@]
vec_ptype2(NA, NULL)
#> <unspecified> [0]
vec_ptype2(NULL, NA)
#> <unspecified> [0]

We can’t return NA here because vec_ptype2() normally returns empty vectors. We also can’t
return NULL because unspecified vectors need to be recognised as logical vectors if they haven’t
been promoted at the end of the reduction.

list_of

vec_ptype_finalise(vec_ptype2(NULL, NA))
#> logical (@)

See the output of vec_ptype_common () which performs the reduction and finalises the type, ready
to be used by the caller:

vec_ptype_common(NULL, NULL)
#> NULL

vec_ptype_common(NA, NULL)
#> logical(@)

Note that partial types in vctrs make use of the same mechanism. They are finalised with
vec_ptype_finalise().

list_of list_of 83 class for homogenous lists

Description

A list_of object is a list where each element has the same type. Modifying the list with $, [, and
[[preserves the constraint by coercing all input items.

Usage

list_of (..., .ptype = NULL)
as_list_of(x, ...)
validate_list_of(x)
is_list_of(x)

S3 method for class 'vctrs_list_of'

nyn

vec_ptype2(x, y, ..., x_arg = "x", y_arg = "y")

S3 method for class 'vctrs_list_of"
vec_cast(x, to, ...)

Arguments

Vectors to coerce.

.ptype If NULL, the default, the output type is determined by computing the common
type across all elements of

Alternatively, you can supply . ptype to give the output known type. If getOption("vctrs.no_gues:

is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

X For as_list_of(), a vector to be coerced to list_of.
y, to Arguments to vec_ptype2() and vec_cast().
x_arg Argument names for x and y. These are used in error messages to inform the user

about the locations of incompatible types (see stop_incompatible_type()).

y_arg Argument names for x and y. These are used in error messages to inform the user
about the locations of incompatible types (see stop_incompatible_type()).

name_spec 5

Details

Unlike regular lists, setting a list element to NULL using [[does not remove it.

Examples

x <- list_of(1:3, 5:6, 10:15)

if (requireNamespace("tibble”, quietly = TRUE)) {
tibble::tibble(x = x)

3

vec_c(list_of (1, 2), list_of(FALSE, TRUE))

name_spec Name specifications

Description

A name specification describes how to combine an inner and outer names. This sort of name
combination arises when concatenating vectors or flattening lists. There are two possible cases:

e Named vector:
vec_c(outer = c(inner1 = 1, inner2 = 2))
e Unnamed vector:

vec_c(outer = 1:2)

In r-lib and tidyverse packages, these cases are errors by default, because there’s no behaviour that
works well for every case. Instead, you can provide a name specification that describes how to
combine the inner and outer names of inputs. Name specifications can refer to:

* outer: The external name recycled to the size of the input vector.

 inner: Either the names of the input vector, or a sequence of integer from 1 to the size of the
vector if it is unnamed.

Arguments

name_spec, .name_spec
A name specification for combining inner and outer names. This is relevant
for inputs passed with a name, when these inputs are themselves named, like
outer =c(inner = 1), or when they have length greater than 1: outer =1:2.
By default, these cases trigger an error. You can resolve the error by providing a
specification that describes how to combine the names or the indices of the inner
vector with the name of the input. This specification can be:

* A function of two arguments. The outer name is passed as a string to the
first argument, and the inner names or positions are passed as second argu-
ment.

* An anonymous function as a purrr-style formula.
* A glue specification of the form "{outer}_{inner}".

See the name specification topic.

6 partial_factor

Examples

By default, named inputs must be length 1:
vec_c(name = 1) # ok
try(vec_c(name = 1:3)) # bad

They also can't have internal names, even if scalar:
try(vec_c(name = c(internal = 1))) # bad

Pass a name specification to work around this. A specification
can be a glue string referring to ‘outer" and ‘inner‘:
vec_c(name = 1:3, other = 4:5, .name_spec = "{outer}")
vec_c(name = 1:3, other = 4:5, .name_spec = "{outer}_{inner}")

They can also be functions:
my_spec <- function(outer, inner) paste(outer, inner, sep = "_")

vec_c(name = 1:3, other = 4:5, .name_spec = my_spec)

Or purrr-style formulas for anonymous functions:

vec_c(name = 1:3, other = 4:5, .name_spec = ~ paste@(.x, .y))
partial_factor Partially specify a factor
Description

This special class can be passed as a ptype in order to specify that the result should be a factor that
contains at least the specified levels.
Usage

partial_factor(levels = character())

Arguments

levels Character vector of labels.

Examples

Assert that ‘x‘ is a factor
vec_assert(factor(”x"), partial_factor())

Testing with ‘factor()"‘ is too strict,

because it tries to match the levels exactly
rather than learning them from the data.
try(vec_assert(factor(”x"), factor()))

You can also enforce a minimum set of levels
try(vec_assert(factor("x"), partial_factor("y")))

vec_assert(factor(c("x", "y")), partial_factor("y"))

pf <- partial_factor(levels = c("x", "y"))
pf

partial_frame 7

vec_ptype_common(factor("v"), factor("w"), .ptype = pf)

partial_frame Partially specify columns of a data frame

Description
This special class can be passed to . ptype in order to specify the types of only some of the columns
in a data frame.

Usage

partial_frame(...)

Arguments

Attributes of subclass

Examples

pf <- partial_frame(x = double())
pf

vec_rbind(
data.frame(x = 1L, y = "a"),
data.frame(x = FALSE, z = 10),
.ptype = partial_frame(x = double(), a = character())
)

vec_assert Assert an argument has known prototype and/or size

Description

* vec_is() is a predicate that checks if its input conforms to a prototype and/or a size.
* vec_assert() throws an error when the input doesn’t conform.

Usage

vec_assert(x, ptype = NULL, size = NULL, arg = as_label(substitute(x)))

vec_is(x, ptype = NULL, size = NULL)

Arguments
X A vector argument to check.
ptype Prototype to compare against. If the prototype has a class, its vec_ptype() is
compared to that of x with identical(). Otherwise, its typeof () is compared
to that of x with ==.
size Size to compare against
arg Name of argument being checked. This is used in error messages. The label of

the expression passed as x is taken as default.

8 vec_as_names

Value

vec_is() returns TRUE or FALSE. vec_assert() either throws a typed error (see section on error
types) or returns X, invisibly.

Error types

* If the prototype doesn’t match, an error of class "vctrs_error_assert_ptype” is raised.
¢ If the size doesn’t match, an error of class "vctrs_error_assert_size"” is raised.

Both errors inherit from "vctrs_error_assert”.

vec_as_names Retrieve and repair names

Description
vec_as_names () takes a character vector of names and repairs it according to the repair argument.
It is the r-lib and tidyverse equivalent of base: :make.names().

vetrs deals with a few levels of name repair:

* minimal names exist. The names attribute is not NULL. The name of an unnamed element is ""
and never NA. For instance, vec_as_names() always returns minimal names and data frames
created by the tibble package have names that are, at least, minimal.

* unique names are minimal, have no duplicates, and can be used where a variable name is
expected. Empty names, . .., and . . followed by a sequence of digits are banned.

— All columns can be accessed by name via df [["name”]] and df$*name* andwith(df, *name").
* universal names are unique and syntactic (see Details for more).
— Names work everywhere, without quoting: df$name and with(df,name) and Im(name1
~ name2,data =df) and dplyr: :select(df,name) all work.

universal implies unique, unique implies minimal. These levels are nested.

Usage
vec_as_names(
names,
)
repair = c("minimal”, "unique", "universal”, "check_unique"),
quiet = FALSE
)
Arguments
names A character vector.
These dots are for future extensions and must be empty.
repair Either a string or a function. If a string, it must be one of "check_unique”,

"minimal”, "unique”, or "universal”. If a function, it is invoked with a vector
of minimal names and must return minimal names, otherwise an error is thrown.

* Minimal names are never NULL or NA. When an element doesn’t have a
name, its minimal name is an empty string.

vec_as_names 9

* Unique names are unique. A suffix is appended to duplicate names to make
them unique.

* Universal names are unique and syntactic, meaning that you can safely use
the names as variables without causing a syntax error.

The "check_unique” option doesn’t perform any name repair. Instead, an error
is raised if the names don’t suit the "unique” criteria.

quiet By default, the user is informed of any renaming caused by repairing the names.
This only concerns unique and universal repairing. Set quiet to TRUE to silence
the messages.

minimal names

nn

minimal names exist. The names attribute is not NULL. The name of an unnamed element is "" and

never NA.

Examples:

Original names of a vector with length 3: NULL
minimal names: "" "" ""

Original names: "x" NA
minimal names: "x" ""

unique names

unique names are minimal, have no duplicates, and can be used (possibly with backticks) in con-
texts where a variable is expected. Empty names, .. ., and .. followed by a sequence of digits are
banned. If a data frame has unique names, you can index it by name, and also access the columns
by name. In particular, df[["name”]] and df$*name* and also with(df, *name") always work.

There are many ways to make names unique. We append a suffix of the form . ..j to any name

that is "" or a duplicate, where j is the position. We also change . .#and ... to ...#.
Example:
Original names: nn HXII nn Hyll “XII H. .2” II. .H
unique names: "...1" "x...2" "...3" "y" "x...5" "...6" "...7"
Pre-existing suffixes of the form ...j are always stripped, prior to making names unique, i.e.

reconstructing the suffixes. If this interacts poorly with your names, you should take control of
name repair.

universal names

universal names are unique and syntactic, meaning they:

* Are never empty (inherited from unique).

* Have no duplicates (inherited from unique).

e Arenot Do not have the form . . i, where i is a number (inherited from unique).
* Consist of letters, numbers, and the dot . or underscore _ characters.

* Start with a letter or start with the dot . not followed by a number.

* Are not a reserved word, e.g., if or function or TRUE.

10 vec_bind

If a vector has universal names, variable names can be used "as is" in code. They work well with
nonstandard evaluation, e.g., df $name works.

vetrs has a different method of making names syntactic than base: :make.names(). In general,
vetrs prepends one or more dots . until the name is syntactic.

Examples:
Original names: " "x" NA "x"
universal names: "...1" "x...2" "...3" "x...4"
Original names: "(y)" "_z" ".2fa" "FALSE"
universal names: ".y." "._z" "..2fa" ".FALSE"
See Also

rlang: :names2() returns the names of an object, after making them minimal.

The Names attribute section in the "tidyverse package development principles".

Examples

By default, ‘vec_as_names()‘ returns minimal names:
vec_as_names(c(NA, NA, "foo"))

You can make them unique:
vec_as_names(c(NA, NA, "foo"), repair = "unique")

Universal repairing fixes any non-syntactic name:

vec_as_names(c("_foo", "+"), repair = "universal")
vec_bind Combine many data frames into one data frame
Description

This pair of functions binds together data frames (and vectors), either row-wise or column-wise.
Row-binding creates a data frame with common type across all arguments. Column-binding creates
a data frame with common length across all arguments.

Usage
vec_rbind(
.ptype = NULL,
.names_to = NULL,
.name_repair = c("unique”, "universal”, "check_unique”)
)

vec_cbind(

.ptype = NULL,

.size = NULL,
.name_repair = c("unique”, "universal”, "check_unique”, "minimal")

https://principles.tidyverse.org/names-attribute.html

vec_bind 11

Arguments

Data frames or vectors.
When the inputs are named:
e vec_rbind() assigns names to row names unless .names_to is supplied.
In that case the names are assigned in the column defined by .names_to.
e vec_cbind() creates packed data frame columns with named inputs.

NULL inputs are silently ignored. Empty (e.g. zero row) inputs will not appear
in the output, but will affect the derived . ptype.

.ptype If NULL, the default, the output type is determined by computing the common
type across all elements of

Alternatively, you can supply . ptype to give the output known type. If getOption("vctrs.no_gues:
is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

.names_to Optionally, the name of a column where the names of . . . arguments are copied.
These names are useful to identify which row comes from which input. If sup-
plied and . . . is not named, an integer column is used to identify the rows.

.name_repair One of "unique”, "universal”, or "check_unique”. See vec_as_names()
for the meaning of these options.

With vec_rbind(), the repair function is applied to all inputs separately. This is
because vec_rbind() needs to align their columns before binding the rows, and
thus needs all inputs to have unique names. On the other hand, vec_cbind()
applies the repair function after all inputs have been concatenated together in
a final data frame. Hence vec_cbind() allows the more permissive minimal
names repair.

.size If, NULL, the default, will determine the number of rows in vec_cbind () output
by using the standard recycling rules.

Alternatively, specify the desired number of rows, and any inputs of length 1
will be recycled appropriately.

Value

A data frame, or subclass of data frame.

If ... is a mix of different data frame subclasses, vec_ptype2() will be used to determine the
output type. For vec_rbind(), this will determine the type of the container and the type of each
column; for vec_cbind() it only determines the type of the output container. If there are no non-
NULL inputs, the result will be data.frame().

Invariants

All inputs are first converted to a data frame. The conversion for 1d vectors depends on the direction
of binding:

* For vec_rbind(), each element of the vector becomes a column in a single row.

* For vec_cbind(), each element of the vector becomes a row in a single column.
Once the inputs have all become data frames, the following invariants are observed for row-binding:

e vec_size(vec_rbind(x,y)) == vec_size(x) + vec_size(y)

e vec_ptype(vec_rbind(x,y)) = vec_ptype_common(x,y)

12 vec_bind

Note that if an input is an empty vector, it is first converted to a 1-row data frame with 0 columns.
Despite being empty, its effective size for the total number of rows is 1.

For column-binding, the following invariants apply:

e vec_size(vec_cbind(x,y)) == vec_size_common(x,y)

* vec_ptype(vec_cbind(x,y)) == vec_chind(vec_ptype(x),vec_ptype(x))

See Also

vec_c() for combining 1d vectors.

Examples

row binding ----------—---—mmmmmmm e

common columns are coerced to common class
vec_rbind(

data.frame(x = 1),

data.frame(x = FALSE)
)

unique columns are filled with NAs
vec_rbind(

data.frame(x = 1),

data.frame(y = "x")
)

null inputs are ignored
vec_rbind(
data.frame(x
NULL,
data.frame(x = 2)
)

1)'

bare vectors are treated as rows
vec_rbind(

c(x =1, y=2),

c(x = 3)
)

default names will be supplied if arguments are not named
vec_rbind(

1:2,

1:3,

1:4
)

column binding -----------—---——---——---————

each input is recycled to have common length
vec_cbind(

data.frame(x = 1),

data.frame(y = 1:3)
)

bare vectors are treated as columns

vec_c 13

vec_cbind(
data.frame(x = 1),
y = letters[1:3]

)

if you supply a named data frame, it is packed in a single column
data <- vec_cbind(
x = data.frame(a =1, b = 2),
y =1
)
data

Packed data frames are nested in a single column. This makes it
possible to access it through a single name:
data$x

since the base print method is suboptimal with packed data
frames, it is recommended to use tibble to work with these:
if (rlang::is_installed("tibble")) {

vec_cbind(x = tibble::tibble(a =1, b =2), y =1)
3

duplicate names are flagged
vec_cbind(x =1, x = 2)

vec_c Combine many vectors into one vector

Description

Combine all arguments into a new vector of common type.

Usage
vec_c(
.ptype = NULL,
.name_spec = NULL,
.name_repair = c("minimal”, "unique"”, "check_unique”, "universal")
)
Arguments
Vectors to coerce.
.ptype If NULL, the default, the output type is determined by computing the common

type across all elements of

Alternatively, you can supply . ptype to give the output known type. If getOption("vctrs.no_gues:
is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

14

.hame_spec

.name_repair

Value

vec_c

A name specification for combining inner and outer names. This is relevant
for inputs passed with a name, when these inputs are themselves named, like
outer = c(inner = 1), or when they have length greater than 1: outer =1:2.
By default, these cases trigger an error. You can resolve the error by providing a
specification that describes how to combine the names or the indices of the inner
vector with the name of the input. This specification can be:

* A function of two arguments. The outer name is passed as a string to the
first argument, and the inner names or positions are passed as second argu-
ment.

* An anonymous function as a purrr-style formula.
* A glue specification of the form "{outer}_{inner}".

See the name specification topic.

How to repair names, see repair options in vec_as_names().

A vector with class given by . ptype, and length equal to the sum of the vec_size() of the contents

of

The vector will have names if the individual components have names (inner names) or if the argu-
ments are named (outer names). If both inner and outer names are present, an error is thrown unless
a .name_spec is provided.

Invariants

* vec_size(vec_c(x,y)) ==vec_size(x) + vec_size(y)

e vec_ptype(vec_c(x,y)) == vec_ptype_common(x,y).

See Also

vec_cbhind()/vec_rbind() for combining data frames by rows or columns.

Examples

vec_c(FALSE, 1L, 1.5)
vec_c(FALSE, 1L, "x", .ptype = character())

Date/times --

c(Sys.Date(), Sys.time())
c(Sys.time(), Sys.Date())

vec_c(Sys.Date(), Sys.time())
vec_c(Sys.time(), Sys.Date())

Factors -----

c(factor(”"a"), factor("b"))
vec_c(factor(”a"), factor("b"))

By default, named inputs must be length 1:

vec_c(name =

D

try(vec_c(name

1:3))

Pass a name specification to work around this:

vec_chop 15

vec_c(name = 1:3, .name_spec = "{outer}_{inner}")

See ‘?name_spec® for more examples of name specifications.

vec_chop Repeatedly slice a vector

Description

vec_chop() provides an efficient method to repeatedly slice a vector. It captures the pattern of
map(indices,vec_slice,x =x).

Usage

vec_chop(x, indices = NULL)

Arguments
X A vector
indices A list of index values to slice x with, or NULL. Each element of the list must
be an integer, character or logical vector that would be valid as an index in
vec_slice(). If NULL, x is split into its individual elements, equivalent to using
an indices of as.list(vec_seq_along(x)).
Value

A list of size vec_size(indices) or, if indices == NULL, vec_size(x).

Examples

vec_chop(1:5)
vec_chop(1:5, list(1, 1:2))
vec_chop(mtcars, list(1:3, 4:6))

vec_compare Compare two vectors

Description

Compare two vectors

Usage

vec_compare(x, y, na_equal = FALSE, .ptype = NULL)

Arguments
X,y Vectors with compatible types and lengths.
na_equal Should NA values be considered equal?

.ptype Override to optionally specify common type

16 vec_count

Value

An integer vector with values -1 for x <y, 0 if x ==y, and 1 if x >y. If na_equal is FALSE, the
result will be NA if either x or y is NA.

S3 dispatch

vec_compare() is not generic for performance; instead it uses vec_proxy_compare() to

Examples

vec_compare(c(TRUE, FALSE, NA), FALSE)
vec_compare(c(TRUE, FALSE, NA), FALSE, na_equal = TRUE)

vec_compare(1:10, 5)
vec_compare(runif(10), 0.5)
vec_compare(letters[1:10], "d")

df <- data.frame(x = c(1, 1, 1, 2), y =c(0, 1, 2, 1))
vec_compare(df, data.frame(x =1, y = 1))

vec_count Count unique values in a vector

Description

Count the number of unique values in a vector. vec_count() has two important differences to
table(): it returns a data frame, and when given multiple inputs (as a data frame), it only counts
combinations that appear in the input.

Usage
vec_count(x, sort = c("count”, "key", "location”, "none"))
Arguments
X A vector (including a data frame).
sort One of "count", "key", "location", or "none".
* "count", the default, puts most frequent values at top
* "key", orders by the output key column (i.e. unique values of x)
* "location", orders by location where key first seen. This is useful if you
want to match the counts up to other unique/duplicated functions.
* "none", leaves unordered.
Value

A data frame with columns key (same type as x) and count (an integer vector).

vec_data 17

Examples

vec_count(mtcars$vs)
vec_count(iris$Species)

If you count a data frame you'll get a data frame
column in the output
str(vec_count(mtcars[c("vs"”, "am")1))

Sorting —---——-—-—-—-mmmm oo
x <- letters[rpois(100, 6)]
default is to sort by frequency

vec_count(x)

by can sort by key
vec_count(x, sort = "key")

or location of first value
vec_count(x, sort = "location")

head(x)

or not at all

vec_count(x, sort = "none")
vec_data Extract underlying data
Description

Extract the data underlying an S3 vector object, i.e. the underlying (named) atomic vector or list.

* vec_data() returns unstructured data. The only attributes preserved are names, dims, and
dimnames.

Currently, due to the underlying memory architecture of R, this creates a full copy of the data.

* vec_proxy() may return structured data. This generic is the main customisation point in
vetrs, along with vec_restore(). See the section below to learn when you should implement
vec_proxy().

Methods must return a vector type. Records and data frames will be processed rowwise.

Usage

vec_data(x)

vec_proxy(x, ...)
Arguments
X A vector or object implementing vec_proxy().

These dots are for future extensions and must be empty.

Value

The data underlying x, free from any attributes except the names.

18

vec_default_cast

When should you proxy your type

Se

You should only implement vec_proxy () when your type is designed around a non-vector class.
Le. anything that is not either:

¢ An atomic vector
e A bare list

¢ A data frame

In this case, implement vec_proxy() to return such a vector class. The vctrs operations such as
vec_slice() are applied on the proxy and vec_restore() is called to restore the original repre-
sentation of your type.

The most common case where you need to implement vec_proxy() is for S3 lists. In vetrs, S3
lists are treated as scalars by default. This way we don’t treat objects like model fits as vectors.
To prevent vctrs from treating your S3 list as a scalar, unclass it in the vec_proxy() method. For
instance, here is the definition for 1ist_of:

vec_proxy.vctrs_list_of <- function(x) {
unclass(x)

3

Another case where you need to implement a proxy is record types. Record types should return a
data frame, as in the POSIX1t method:

vec_proxy.POSIX1t <- function(x) {
new_data_frame(unclass(x))

}

Note that you don’t need to implement vec_proxy () when your class inherits from vctrs_vctr or
vctrs_rcrd.

e Also

See vec_restore() for the inverse operation: it restores attributes given a bare vector and a proto-
type; vec_restore(vec_data(x),x) will always yield x.

vec_default_cast Default cast method

Description

This function should typically be called from the default vec_cast() method for your class, e.g.
vec_cast.myclass.default(). It does two things:

* If x is an unspecified vector, it automatically casts it to to using vec_init().

¢ Otherwise, an error is thrown with stop_incompatible_cast().

Usage

nyn

vec_default_cast(x, to, x_arg = "x", to_arg = "to")

vec_duplicate 19

Arguments
X Vectors to cast.
to Type to cast to. If NULL, x will be returned as is.
x_arg Argument names for x and to. These are used in error messages to inform the
user about the locations of incompatible types (see stop_incompatible_type()).
to_arg Argument names for x and to. These are used in error messages to inform the
user about the locations of incompatible types (see stop_incompatible_type()).
vec_duplicate Find duplicated values
Description

* vec_duplicate_any(): detects the presence of duplicated values, similar to anyDuplicated().

* vec_duplicate_detect(): returns a logical vector describing if each element of the vector
is duplicated elsewhere. Unlike duplicated(), it reports all duplicated values, not just the
second and subsequent repetitions.

* vec_duplicate_id(): returns an integer vector giving the location of the first occurrence of
the value.

Usage

vec_duplicate_any(x)
vec_duplicate_detect(x)

vec_duplicate_id(x)

Arguments

X A vector (including a data frame).

Value

* vec_duplicate_any(): alogical vector of length 1.
* vec_duplicate_detect(): alogical vector the same length as x.

e vec_duplicate_id(): an integer vector the same length as x.

Missing values

In most cases, missing values are not considered to be equal, i.e. NA ==NA is not TRUE. This be-
haviour would be unappealing here, so these functions consider all NAs to be equal. (Similarly, all
NaN are also considered to be equal.)

See Also

vec_unique() for functions that work with the dual of duplicated values: unique values.

20 vec_equal

Examples

vec_duplicate_any(1:10)
vec_duplicate_any(c(1, 1:10))

x <- c(10, 10, 20, 30, 30, 40)

vec_duplicate_detect(x)

Note that ‘duplicated()‘ doesn't consider the first instance to
be a duplicate

duplicated(x)

Identify elements of a vector by the location of the first element that
they're equal to:

vec_duplicate_id(x)

Location of the unique values:

vec_unique_loc(x)

Equivalent to ‘duplicated()‘:

vec_duplicate_id(x) == seqg_along(x)

vec_equal Test if two vectors are equal

Description
vec_equal_na() tests a special case: equality with NA. It is similar to is.na but:

* Considers the missing element of a list to be NULL.

» Considered data frames and records to be missing if every component is missing. This pre-
serves the invariant that vec_equal_na(x) is equal to vec_equal (x,vec_init(x),na_equal
= TRUE).

Usage

vec_equal(x, y, na_equal = FALSE, .ptype = NULL)

vec_equal_na(x)

Arguments
X Vectors with compatible types and lengths.
y Vectors with compatible types and lengths.
na_equal Should NA values be considered equal?
.ptype Override to optionally specify common type
Value

A logical vector the same size as. Will only contain NAs if na_equal is FALSE.

vec_init 21

Examples

vec_equal (c(TRUE, FALSE, NA), FALSE)
vec_equal (c(TRUE, FALSE, NA), FALSE, na_equal = TRUE)
vec_equal_na(c(TRUE, FALSE, NA))

vec_equal(5, 1:10)
vec_equal("d”, letters[1:10])

df <- data.frame(x = c(1, 1,
vec_equal(df, data.frame(x =
vec_equal_na(df)

2, 1, NA), y = c(1, 2, 1, NA, NA))
1, y=2))

vec_init Initialize a vector

Description

Initialize a vector

Usage

vec_init(x, n = 1L)

Arguments
X Template of vector to initialize.
n Desired size of result.
Examples

vec_init(1:10, 3)
vec_init(Sys.Date(), 5)
vec_init(mtcars, 2)

vec_is_list Is the object a list?

Description
vec_is_list() tests if x is considered a list in the vctrs sense. It returns TRUE if:

* x is a bare list with no class.
* x is a list explicitly inheriting from "1ist” or "vctrs_list_of".
e xisan S3 list that vec_is () returns TRUE for. For this to return TRUE, the class must implement
a vec_proxy () method.
Usage

vec_is_list(x)

22 vec_match

Arguments

X An object.

Details

Notably, data frames and S3 record style classes like POSIXIt are not considered lists.

Examples

vec_is_list(list())
vec_is_list(list_of (1))

vec_is_list(data.frame())

vec_match Find matching observations across vectors

Description

vec_in() returns a logical vector based on whether needle is found in haystack. vec_match()
returns an integer vector giving location of needle in haystack, or NA if it’s not found.

Usage

vec_match(needles, haystack)

vec_in(needles, haystack)

Arguments

needles, haystack
Vector of needles to search for in vector haystack. haystack should usually be
unique; if not vec_match() will only return the location of the first match.

needles and haystack are coerced to the same type prior to comparison.

Details

vec_in() is equivalent to %in%; vec_match() is equivalent to match().

Value

A vector the same length as needles. vec_in() returns a logical vector; vec_match() returns an
integer vector.

Missing values

In most cases, missing values are not considered to be equal, i.e. NA ==NA is not TRUE. This be-
haviour would be unappealing here, so these functions consider all NAs to be equal. (Similarly, all
NaN are also considered to be equal.)

vec_order

Examples

hadley <- strsplit(”hadley”, "")[[11]

vec_match(hadley, letters)

non nin n_n non

vowels <- c("a", "e", "i", "o", "u
vec_match(hadley, vowels)
vec_in(hadley, vowels)

Only the first index of duplicates is returned

vec_match(c("a", "b"), c("a", "b",

23

vec_order Order and sort vectors

Description

Order and sort vectors

Usage
vec_order(x, direction = c("asc”, "desc"), na_value = c("largest”, "smallest"))
vec_sort(x, direction = c("asc"”, "desc"), na_value = c("largest”, "smallest"))
Arguments
X A vector
direction Direction to sort in. Defaults to ascending.
na_value Should NAs be treated as the largest or smallest values?
Value

* vec_order () an integer vector the same size as x.

* vec_sort() a vector with the same size and type as x.

Examples

x <= round(c(runif(9), NA), 3)
vec_order(x)

vec_sort(x)

vec_sort(x, "desc")

Can also handle data frames

df <- data.frame(g = sample(2, 10,
vec_order (df)

vec_sort(df)

vec_sort(df, "desc")

replace = TRUE), x

= X)

24 vec_ptype

vec_ptype Find the prototype of a set of vectors

Description

vec_ptype() returns the unfinalised prototype of a single vector. vec_ptype_common() finds the
common type of multiple vectors. vec_ptype_show() nicely prints the common type of any num-
ber of inputs, and is designed for interactive exploration.

Usage
vec_ptype(x)
vec_ptype_common(..., .ptype = NULL)

vec_ptype_show(...)

Arguments
., X Vectors inputs
.ptype If NULL, the default, the output type is determined by computing the common

type across all elements of
Alternatively, you can supply . ptype to give the output known type. If getOption("vctrs.no_gues:
is TRUE you must supply this value: this is a convenient way to make production
code demand fixed types.

Value

vec_ptype() and vec_ptype_common() return a prototype (a size-0 vector)

vec_ptype()
vec_ptype() returns size 0 vectors potentially containing attributes but no data. Generally, this is
just vec_slice(x,@L), but some inputs require special handling.
* While you can’t slice NULL, the prototype of NULL is itself. This is because we treat NULL as
an identity value in the vec_ptype2() monoid.

» The prototype of logical vectors that only contain missing values is the special unspecified
type, which can be coerced to any other 1d type. This allows bare NAs to represent missing
values for any 1d vector type.

See internal-faq-ptype2-identity for more information about identity values.

Because it may contain unspecified vectors, the prototype returned by vec_ptype() is said to be
unfinalised. Call vec_ptype_finalise() to finalise it. Commonly you will need the finalised
prototype as returned by vec_slice(x,0L).

vec_ptype_common()

vec_ptype_common() first finds the prototype of each input, then successively calls vec_ptype2()
to find a common type. It returns a finalised prototype.

vec_recycle 25

Examples

Unknown types -------——---——--———--——--———mo oo
vec_ptype_show()

vec_ptype_show(NA)

vec_ptype_show(NULL)

Vectors ———=——=—=----mm oo
vec_ptype_show(1:10)

vec_ptype_show(letters)

vec_ptype_show(TRUE)

vec_ptype_show(Sys.Date())
vec_ptype_show(Sys.time())
vec_ptype_show(factor("a"))
vec_ptype_show(ordered("a"))

Matrices ——-——-——-——-——-——mmmm oo
The prototype of a matrix includes the number of columns
vec_ptype_show(array(1, dim = c(1, 2)))
vec_ptype_show(array("x", dim = c(1, 2)))

Data frames —--------——---—-m-—mmm oo
The prototype of a data frame includes the prototype of
every column

vec_ptype_show(iris)

The prototype of multiple data frames includes the prototype
of every column that in any data frame
vec_ptype_show(

data.frame(x = TRUE),

data.frame(y = 2),

data.frame(z = "a")

)

vec_recycle Vector recycling

Description

vec_recycle(x, size) recycles a single vector to given size. vec_recycle_common(. . .) recycles
multiple vectors to their common size. All functions obey the vctrs recycling rules, described below,
and will throw an error if recycling is not possible. See vec_size() for the precise definition of

size.
Usage
vec_recycle(x, size, ..., x_arg = "x")
vec_recycle_common(..., .size = NULL)
Arguments

X A vector to recycle.

26 vec_recycle

size Desired output size.

* For vec_recycle_common(), vectors to recycle.
— For vec_recycle(), these dots should be empty.

x_arg Argument name for x. These are used in error messages to inform the user about
which argument has an incompatible size.

.size Desired output size. If omitted, will use the common size from vec_size_common().

Recycling rules

The common size of two vectors defines the recycling rules, and can be summarise with the follow-
ing table:

(Note NULLs are handled specially; they are treated like empty arguments and hence don’t affect the
size)

This is a stricter set of rules than base R, which will usually return output of length max(nx, ny),
warning if the length of the longer vector is not an integer multiple of the length of the shorter.

We say that two vectors have compatible size if they can be recycled to be the same length.

Examples

Inputs with 1 observation are recycled
vec_recycle_common(1:5, 5)
vec_recycle_common(integer(), 5)

Not run:

vec_recycle_common(1:5, 1:2)

End(Not run)

vec_repeat 27

Data frames and matrices are recycled along their rows
vec_recycle_common(data.frame(x = 1), 1:5)
vec_recycle_common(array(1:2, c(1, 2)), 1:5)
vec_recycle_common(array(1:3, c(1, 3, 1)), 1:5)

vec_repeat Expand the length of a vector

Description

This is a special case of rep() for the special case of integer times and each values, and works
along size, rather than length.

Usage

vec_repeat(x, each = 1L, times = 1L)

Arguments
X A vector.
each Number of times to repeat each element of x.
times Number of times to repeat the whole vector of x.
Value

A vector the same type as x with size vec_size(x) * times * each.

Examples

each repeats within
vec_repeat(1:3, each = 2)
times repeats whole thing
vec_repeat(1:3, times = 2)

df <- data.frame(x = 1:2, y = 1:2)

rep() repeats columns of data frame, and returns list:
rep(df, each = 2)

vec_repeat() repeats rows, and returns same data.frame
vec_repeat(df, 2)

28 vec_size

vec_seqg_along Useful sequences

Description
vec_seq_along() is equivalent to seq_along() but uses size, not length. vec_init_along()
creates a vector of missing values with size matching an existing object.

Usage

vec_seqg_along(x)

vec_init_along(x, y = x)

Arguments

X,y Vectors

Value

* vec_seq_along() an integer vector with the same size as x.

e vec_init_along() a vector with the same type as x and the same size as y.

Examples

vec_seq_along(mtcars)
vec_init_along(head(mtcars))

vec_size Number of observations

Description

vec_size(x) returns the size of a vector. vec_is_empty () returns TRUE if the size is zero, FALSE
otherwise.

The size is distinct from the length() of a vector because it generalises to the "number of obser-
vations" for 2d structures, i.e. it’s the number of rows in matrix or a data frame. This definition
has the important property that every column of a data frame (even data frame and matrix columns)
have the same size. vec_size_common(. . .) returns the common size of multiple vectors.

Usage
vec_size(x)
vec_size_common(..., .size = NULL, .absent = QL)

vec_is_empty(x)

vec_size 29

Arguments

Xy oe Vector inputs or NULL.

.size If NULL, the default, the output size is determined by recycling the lengths of all
elements of Alternatively, you can supply .size to force a known size; in
this case, x and . . . are ignored.

.absent The size used when no input is provided, or when all input is NULL. If left as
NULL when no input is supplied, an error is thrown.

Details

There is no vctrs helper that retrieves the number of columns: as this is a property of the type.

vec_size() is equivalent to NROW() but has a name that is easier to pronounce, and throws an error
when passed non-vector inputs.

Value

An integer (or double for long vectors).

vec_size_common() returns .absent if all inputs are NULL or absent, 0L by default.

Invariants

e vec_size(dataframe) == vec_size(dataframe[[i]])
e vec_size(matrix) ==vec_size(matrix[,i,drop =FALSE])

e vec_size(vec_c(x,y)) ==vec_size(x) + vec_size(y)

The size of NULL

The size of NULL is hard-coded to L in vec_size(). vec_size_common() returns .absent when
all inputs are NULL (if only some inputs are NULL, they are simply ignored).

A default size of 0 makes sense because sizes are most often queried in order to compute a total
size while assembling a collection of vectors. Since we treat NULL as an absent input by principle,
we return the identity of sizes under addition to reflect that an absent input doesn’t take up any size.

Note that other defaults might make sense under different circumstances. For instance, a default
size of 1 makes sense for finding the common size because 1 is the identity of the recycling rules.

See Also

vec_slice() for a variation of [compatible with vec_size(), and vec_recycle() to recycle
vectors to common length.

Examples

vec_size(1:100)
vec_size(mtcars)
vec_size(array(dim = c(3, 5, 10)))

vec_size_common(1:10, 1:10)
vec_size_common(1:10@, 1)
vec_size_common(integer(), 1)

30 vec_unique

vec_split Split a vector into groups

Description

This is a generalisation of split() that can split by any type of vector, not just factors. Instead of
returning the keys in the character names, the are returned in a separate parallel vector.

Usage
vec_split(x, by)

Arguments

X Vector to divide into groups.

by Vector whose unique values defines the groups.
Value

A data frame with two columns and size equal to vec_size(vec_unique(by)). The key column
has the same type as by, and the val column is a list containing elements of type vec_ptype(x).

Note for complex types, the default data.frame print method will be suboptimal, and you will
want to coerce into a tibble to better understand the output.

Examples

vec_split(mtcars$cyl, mtcars$vs)
vec_split(mtcars$cyl, mtcars[c("vs”, "am")])

if (require(”tibble")) {
as_tibble(vec_split(mtcars$cyl, mtcars[c("vs"”, "am")]1))
as_tibble(vec_split(mtcars, mtcars[c("vs"”, "am")]1))

3

vec_unique Find and count unique values

Description

e vec_unique(): the unique values. Equivalent to unique().
* vec_unique_loc(): the locations of the unique values.

* vec_unique_count(): the number of unique values.

Usage

vec_unique(x)
vec_unique_loc(x)

vec_unique_count(x)

%0% 31

Arguments

X A vector (including a data frame).

Value

* vec_unique(): a vector the same type as x containing only unique values.
* vec_unique_loc(): an integer vector, giving locations of unique values.

* vec_unique_count(): an integer vector of length 1, giving the number of unique values.

Missing values

In most cases, missing values are not considered to be equal, i.e. NA ==NA is not TRUE. This be-
haviour would be unappealing here, so these functions consider all NAs to be equal. (Similarly, all
NaN are also considered to be equal.)

See Also

vec_duplicate for functions that work with the dual of unique values: duplicated values.

Examples

X <- rpois(100, 8)
vec_unique(x)
vec_unique_loc(x)
vec_unique_count(x)

“vec_unique()‘ returns values in the order that encounters them

use sort = "location” to match to the result of ‘vec_count()"
head(vec_unique(x))
head(vec_count(x, sort = "location”))

Normally missing values are not considered to be equal
NA == NA

But they are for the purposes of considering uniqueness
vec_unique(c(NA, NA, NA, NA, 1, 2, 1))

%% Default value for empty vectors

Description

Use this inline operator when you need to provide a default value for empty (as defined by vec_is_empty())
vectors.

Usage

X %0% Yy

32 %0%

Arguments
X A vector
y Value to use if x is empty. To preserve type-stability, should be the same type as
X.
Examples

1:10 %0% 5
integer() %0% 5

Index

%0%, 31
%in%, 22

anyDuplicated(), 19
as_list_of (list_of), 4

base: :make.names(), 8, 10
duplicated(), 19
finalised, 24

internal-fag-ptype2-identity, 2, 24
is.na, 20
is_list_of (list_of), 4

length(), 28
list_of, 4

name specification topic, 5, /14
name_spec, 5

partial_factor, 6
partial_frame, 7

record types, I8
rep(), 27
reserved, 9

rlang: :names2(), 10

seq_along(), 28

size, 24

split(), 30
stop_incompatible_cast(), I8
stop_incompatible_type(), 4, 19

type, 29
typeof (), 7

unique(), 30
unspecified, 18, 24

validate_list_of (list_of), 4
vec_as_names, 8
vec_as_names(), 11, 14
vec_assert, 7

33

vec_bind, 10

vec_c, 13

vec_c(), 12

vec_cast(), I8
vec_cast.vctrs_list_of (list_of), 4
vec_cbind (vec_bind), 10
vec_cbind(), 14

vec_chop, 15

vec_compare, 15

vec_count, 16

vec_data, 17

vec_default_cast, 18
vec_duplicate, 19, 31
vec_duplicate_any (vec_duplicate), 19
vec_duplicate_detect (vec_duplicate), 19
vec_duplicate_id (vec_duplicate), 19
vec_equal, 20

vec_equal_na (vec_equal), 20

vec_in (vec_match), 22

vec_init, 21

vec_init(), I8

vec_init_along (vec_seq_along), 28
vec_is (vec_assert), 7

vec_is(), 21

vec_is_empty (vec_size), 28
vec_is_empty(), 31

vec_is_list, 21

vec_match, 22

vec_order, 23

vec_proxy (vec_data), 17
vec_proxy(), 21
vec_proxy_compare(), 16
vec_ptype, 24

vec_ptype(), 7

vec_ptype2(), 24
vec_ptype2.vctrs_list_of (list_of), 4
vec_ptype_common (vec_ptype), 24
vec_ptype_finalise(), 24
vec_ptype_show (vec_ptype), 24
vec_rbind (vec_bind), 10
vec_rbind(), 14

vec_recycle, 25

vec_recycle(), 29

34 INDEX

vec_recycle_common (vec_recycle), 25
vec_repeat, 27
vec_restore(), 17, 18
vec_seq_along, 28

vec_size, 28

vec_size(), 25

vec_size_common (vec_size), 28
vec_size_common(), 26
vec_slice(), 15, 18, 29

vec_sort (vec_order), 23
vec_split, 30

vec_unique, 30

vec_unique(), 19
vec_unique_count (vec_unique), 30
vec_unique_loc (vec_unique), 30

	internal-faq-ptype2-identity
	list_of
	name_spec
	partial_factor
	partial_frame
	vec_assert
	vec_as_names
	vec_bind
	vec_c
	vec_chop
	vec_compare
	vec_count
	vec_data
	vec_default_cast
	vec_duplicate
	vec_equal
	vec_init
	vec_is_list
	vec_match
	vec_order
	vec_ptype
	vec_recycle
	vec_repeat
	vec_seq_along
	vec_size
	vec_split
	vec_unique
	%0%
	Index

