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Abstract

This document explains diversity related methods in vegan. The methods are briefly
described, and the equations used them are given often in more detail than in their help
pages. The methods discussed include common diversity indices and rarefaction, families
of diversity indices, species abundance models, species accumulation models and beta
diversity, extrapolated richness and probability of being a member of the species pool.
The document is still incomplete and does not cover all diversity methods in vegan.
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2 Vegan: ecological diversity

The vegan package has two major components: multivariate analysis (mainly ordination), and
methods for diversity analysis of ecological communities. This document gives an introduction
to the latter. Ordination methods are covered in other documents. Many of the diversity
functions were written by Roeland Kindt, Bob O’Hara and Péter Sólymos.

Most diversity methods assume that data are counts of individuals. The methods are used
with other data types, and some people argue that biomass or cover are more adequate than
counts of individuals of variable sizes. However, this document mainly uses a data set with
counts: stem counts of trees on 1 ha plots in the Barro Colorado Island. The following steps
make these data available for the document:

R> library(vegan)
R> data(BCI)

1. Diversity indices

Function diversity finds the most commonly used diversity indices:

H = −
S∑
i=1

pi logb pi Shannon–Weaver (1)

D1 = 1−
S∑
i=1

p2i Simpson (2)

D2 =
1∑S
i=1 p

2
i

inverse Simpson (3)

where pi is the proportion of species i, and S is the number of species so that
∑S

i=1 pi = 1,
and b is the base of the logarithm. It is most common to use natural logarithms (and then
we mark index as H ′), but b = 2 has theoretical justification. The default is to use natural
logarithms. Shannon index is calculated with:

R> H <- diversity(BCI)

which finds diversity indices for all sites.

Vegan does not have indices for evenness (equitability), but the most common of these,
Pielou’s evenness J = H ′/ log(S) is easily found as:

R> J <- H/log(specnumber(BCI))

where specnumber is a simple vegan function to find the numbers of species.

vegan also can estimate series of Rényi and Tsallis diversities. Rényi diversity of order a is:

Ha =
1

1− a
log

S∑
i=1

pai (4)

or the corresponding Hill numbers Na = exp(Ha). Many common diversity indices are special
cases of Hill numbers: N0 = S, N1 = exp(H ′), N2 = D2, and N∞ = 1/(max pi). The
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Figure˜1: Rényi diversities in six ran-
domly selected plots. The plot uses
Trellis graphics with a separate panel
for each site. The dots show the val-
ues for sites, and the lines the extremes
and median in the data set.

corresponding Rényi diversities are H0 = log(S), H1 = H ′, H2 = − log(
∑
p2i ), and H∞ =

− log(max pi). Tsallis diversity of order q is:

Hq =
1

q − 1

(
1−

S∑
i=1

pq

)
. (5)

This corresponds to common diversity indices: H0 = S − 1, H1 = H ′, and H2 = D2, and can
be converted to the Hill number:

Nq = (1− (q − 1)Hq)
1

1−q . (6)

We select a random subset of five sites for Rényi diversities:

R> k <- sample(nrow(BCI), 6)
R> R <- renyi(BCI[k,])

We can really regard a site more diverse if all of its Rényi diversities are higher than in another
site. We can inspect this graphically using the standard plot function for the renyi result
(Fig. 1).

Finally, the α parameter of Fisher’s log-series can be used as a diversity index:

R> alpha <- fisher.alpha(BCI)

2. Rarefaction

Species richness increases with sample size, and differences in richness actually may be caused
by differences in sample size. To solve this problem, we may try to rarefy species richness to
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the same number of individuals. Expected number of species in a community rarefied from
N to n individuals is:

Ŝn =
S∑
i=1

(1− qi), where qi =

(
N − xi
n

) / (N
n

)
(7)

where xi is the count of species i, and
(
N
n

)
is the binomial coefficient, or the number of ways

we can choose n from N , and qi give the probabilities that species i does not occur in a sample
of size n. This is defined only when N − xi > n, but for other cases qi = 0 or the species is
sure to occur in the sample. The variance of rarefied richness is:

s2 = qi(1− qi) + 2

S∑
i=1

∑
j>i

[(
N − xi − xj

n

) / (N
n

)
− qiqj

]
(8)

Equation 8 actually is of the same form as the variance of sum of correlated variables:

VAR
(∑

xi

)
=
∑

VAR(xi) + 2

S∑
i=1

∑
j>i

COV(xi, xj) (9)

The number of stems per hectare varies in our data set:

R> quantile(rowSums(BCI))

0% 25% 50% 75% 100%
340.0 409.0 428.0 443.5 601.0

To express richness for the same number of individuals, we can use:

R> Srar <- rarefy(BCI, min(rowSums(BCI)))

Rarefaction curves often are seen as an objective solution for comparing species richness with
different sample sizes. However, rank orders typically differ among different rarefaction sample
sizes, rarefaction curves can cross.

As an extreme case we may rarefy sample size to two individuals:

R> S2 <- rarefy(BCI, 2)

This will not give equal rank order with the previous rarefaction richness:

R> all(rank(Srar) == rank(S2))

[1] FALSE

Moreover, the rarefied richness for two individuals is a finite sample variant of Simpson’s
diversity index (or, more precisely of D1 + 1), and these two are almost identical in BCI:

R> range(diversity(BCI, "simp") - (S2 -1))

[1] -0.002868298 -0.001330663
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Rarefaction is sometimes presented as an ecologically meaningful alternative to dubious di-
versity indices, but the differences really seem to be small.

3. Taxonomic and functional diversity

Simple diversity indices only consider species identity: all different species are equally differ-
ent. In contrast, taxonomic and functional diversity indices judge the differences of species
are. Taxonomic and functional diversities are used in different fields of science, but they re-
ally have very similar reasoning, and either could be used either with taxonomic or functional
properties of species.

3.1. Taxonomic diversity: average distance of properties

The two basic indices are called taxonomic diversity (∆) and taxonomic distinctness (∆∗):

∆ =

∑∑
i<j ωijxixj

n(n− 1)/2
(10)

∆∗ =

∑∑
i<j ωijxixj∑∑
i<j xixj

(11)

These equations give the index values for a single site, and summation goes over species i
and j, and ω are the taxonomic distances among taxa, x are species abundances, and n is
the total abundance for a site. With presence–absence data, both indices reduce to the same
index called ∆+, and for this it is possible to estimate standard deviation. There are two
indices derived from ∆+: it can be multiplied with species richness1 to give s∆+, or it can
be used to estimate an index of variation in taxonomic distinctness Λ+:

Λ+ =

∑∑
i<j ω

2
ij

n(n− 1)/2
− (∆+)2 (12)

We still need the taxonomic differences among species (ω) to calculate the indices. These can
be any distance structure among species, but usually it is found from established hierarchic
taxonomy. Typical coding is that differences among species in the same genus is 1, among the
same family it is 2 etc. However, the taxonomic differences are scaled to maximum 100 for
easier comparison between different data sets and taxonomies. Alternatively, it is possible to
scale steps between taxonomic level proportional to the reduction in the number of categories:
if almost all genera have only one species, it does not make a great difference if two individuals
belong to a different species or to a different genus.

Function taxondive implements indices of taxonomic diversity, and taxa2dist can be used
to convert classification tables to taxonomic distances either with constant or variable step
lengths between successive categories. There is no taxonomic table for the BCI data in vegan2

but there is such a table for the Dune meadow data (Fig. 2):

1This text normally uses upper case letter S for species richness, but lower case s is used here in accordance
with the original papers on taxonomic diversity

2Actually I made such a classification, but taxonomic differences proved to be of little use in the Barro
Colorado data: they only singled out sites with Monocots (palm trees) in the data.
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Figure˜2: Taxonomic diversity ∆+ for
the dune meadow data. The points are
diversity values of single sites, and the
funnel is their approximate confidence
intervals (2× standard error).
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R> data(dune)
R> data(dune.taxon)
R> taxdis <- taxa2dist(dune.taxon, varstep=TRUE)
R> mod <- taxondive(dune, taxdis)

3.2. Functional diversity: the height of property tree

In taxonomic diversity the primary data were taxonomic trees which were transformed to
pairwise distances among species. In functional diversity the primary data are species prop-
erties which are translated to pairwise distances among species and then to clustering trees of
species properties. The argument for trees is that in this way a single deviant species will have
a small influence, since its difference is evaluated only once instead of evaluating its distance
to all other species.

Function treedive implements functional diversity defined as the total branch length in a
trait dendrogram connecting all species, but excluding the unnecessary root segments of the
tree. The example uses the taxonomic distances of the previous chapter. These are first
converted to a hierarchic clustering (which actually were their original form before taxa2dist
converted them into distances)

R> tr <- hclust(taxdis, "aver")
R> mod <- treedive(dune, tr)

4. Species abundance models

Diversity indices may be regarded as variance measures of species abundance distribution.
We may wish to inspect abundance distributions more directly. Vegan has functions for
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Figure˜3: Fisher’s log-series fitted to
one randomly selected site (10).

Fisher’s log-series and Preston’s log-normal models, and in addition several models for species
abundance distribution.

4.1. Fisher and Preston

In Fisher’s log-series, the expected number of species f̂ with n individuals is:

f̂n =
αxn

n
(13)

where α is the diversity parameter, and x is a nuisance parameter defined by α and total
number of individuals N in the site, x = N/(N − α). Fisher’s log-series for a randomly
selected plot is (Fig. 3):

R> k <- sample(nrow(BCI), 1)
R> fish <- fisherfit(BCI[k,])
R> fish

Fisher log series model
No. of species: 94

Estimate Std. Error
alpha 34.823 4.4404

We already saw α as a diversity index. Now we also obtained estimate of standard error of α
(these also are optionally available in fisher.alpha). The standard errors are based on the
second derivatives (curvature) of log-likelihood at the solution of α. The distribution of α is
often non-normal and skewed, and standard errors are of not much use. However, fisherfit
has a profile method that can be used to inspect the validity of normal assumptions, and
will be used in calculations of confidence intervals from profile deviance:
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R> confint(fish)

2.5 % 97.5 %
26.97514 44.48423

Preston’s log-normal model is the main challenger to Fisher’s log-series. Instead of plotting
species by frequencies, it bins species into frequency classes of increasing sizes. As a result,
upper bins with high range of frequencies become more common, and sometimes the result
looks similar to Gaussian distribution truncated at the left.

There are two alternative functions for the log-normal model: prestonfit and prestondistr.
Function prestonfit uses traditionally binning approach, and is burdened with arbitrary
choices of binning limits and treatment of ties. It seems that Preston split ties between
adjacent octaves: only half of the species observed once were in the first octave, and half
were transferred to the next octave, and the same for all species at the octave limits occuring
2, 4, 8, 16. . . times. Function prestonfit can either split the ties or keep all limit cases in
the lower octave. Function prestondistr directly maximizes truncated log-normal likelihood
without binning data, and it is the recommended alternative. Log-normal models usually fit
poorly to the BCI data, but here our random plot (number 10):

R> prestondistr(BCI[k,])

Preston lognormal model
Method: maximized likelihood to log2 abundances
No. of species: 94

mode width S0
0.9941697 1.8317765 23.7539289

Frequencies by Octave
0 1 2 3 4 5 6

Observed 17.50000 25.50000 19.50000 15.50000 8.50000 5.500000 2.0000000
Fitted 20.50087 23.75381 20.42975 13.04252 6.18057 2.174024 0.5676345

4.2. Ranked abundance distribution

An alternative approach to species abundance distribution is to plot logarithmic abundances
in decreasing order, or against ranks of species. These are known as ranked abundance
distribution curves, species abundance curves, dominance–diversity curves or Whittaker plots.
Function radfit fits some of the most popular models using maximum likelihood estimation:

âr =
N

S

S∑
k=r

1

k
brokenstick (14)

âr = Nα(1− α)r−1 preemption (15)

âr = exp [log(µ) + log(σ)Φ] log-normal (16)

âr = Np̂1r
γ Zipf (17)

âr = Nc(r + β)γ Zipf–Mandelbrot (18)
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Figure˜4: Ranked abundance distribu-
tion models for a random plot (no. 10).
The best model has the lowest aic.

Where âr is the expected abundance of species at rank r, S is the number of species, N is the
number of individuals, Φ is a standard normal function, p̂1 is the estimated proportion of the
most abundant species, and α, µ, σ, γ, β and c are the estimated parameters in each model.

It is customary to define the models for proportions pr instead of abundances ar, but there
is no reason for this, and radfit is able to work with the original abundance data. We have
count data, and the default Poisson error looks appropriate, and our example data set gives
(Fig. 4):

R> rad <- radfit(BCI[k,])
R> rad

RAD models, family poisson
No. of species 94, total abundance 483

par1 par2 par3 Deviance AIC BIC
Null 77.2737 353.6126 353.6126
Preemption 0.048132 62.7210 341.0598 343.6031
Lognormal 0.97341 1.1723 20.4770 300.8158 305.9024
Zipf 0.14073 -0.84897 39.7066 320.0454 325.1320
Mandelbrot 1.9608 -1.522 6.7247 9.8353 292.1741 299.8040

Function radfit compares the models using alternatively Akaike’s or Schwartz’s Bayesian
information criteria. These are based on log-likelihood, but penalized by the number of
estimated parameters. The penalty per parameter is 2 in aic, and logS in bic. Brokenstick
is regarded as a null model and has no estimated parameters in vegan. Preemption model
has one estimated parameter (α), log-normal and Zipf models two (µ, σ, or p̂1, γ, resp.), and
Zipf–Mandelbrot model has three (c, β, γ).

Function radfit also works with data frames, and fits models for each site. It is curious
that log-normal model rarely is the choice, although it generally is regarded as the canonical
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model, in particular in data sets like Barro Colorado tropical forests.

5. Species accumulation and beta diversity

Species accumulation models and species pool models study collections of sites, and their
species richness, or try to estimate the number of unseen species.

5.1. Species accumulation models

Species accumulation models are similar to rarefaction: they study the accumulation of species
when the number of sites increases. There are several alternative methods, including accu-
mulating sites in the order they happen to be, and repeated accumulation in random order.
In addition, there are three analytic models. Rarefaction pools individuals together, and
applies rarefaction equation (7) to these individuals. Kindt’s exact accumulator resembles
rarefaction:

Ŝn =

S∑
i=1

(1− pi), where pi =

(
N − fi
n

) / (N
n

)
(19)

where fi is the frequency of species i. Approximate variance estimator is:

s2 = pi(1− pi) + 2

S∑
i=1

∑
j>i

(
rij
√
pi(1− pi)

√
pj(1− pj)

)
(20)

where rij is the correlation coefficient between species i and j. Both of these are unpublished:
eq. 19 was developed by Roeland Kindt, and eq. 20 by Jari Oksanen. The third analytic
method was suggested by Coleman:

Sn =
S∑
i=1

(1− pi), where pi =

(
1− 1

n

)fi
(21)

and he suggested variance s2 = pi(1−pi) which ignores the covariance component. In addition,
eq. 21 does not properly handle sampling without replacement and underestimates the species
accumulation curve.

The recommended is Kindt’s exact method (Fig. 5):

R> sac <- specaccum(BCI)
R> plot(sac, ci.type="polygon", ci.col="yellow")

5.2. Beta diversity

Whittaker divided diversity into various components. The best known are diversity in one
spot that he called alpha diversity, and the diversity along gradients that he called beta
diversity. The basic diversity indices are indices of alpha diversity. Beta diversity should be
studied with respect to gradients, but almost everybody understand that as a measure of
general heterogeneity: how many more species do you have in a collection of sites compared
to an average site.
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Figure˜5: Species accumulation curve
for the BCI data; exact method.

The best known index of beta diversity is based on the ratio of total number of species in a
collection of sites (S) and the average richness per one site (ᾱ):

β = S/ᾱ− 1 (22)

Subtraction of one means that β = 0 when there are no excess species or no heterogeneity
between sites. For this index, no specific functions are needed, but this index can be easily
found with the help of vegan function specnumber:

R> ncol(BCI)/mean(specnumber(BCI)) - 1

[1] 1.478519

The index of eq. 22 is problematic because S increases with the number of sites even when
sites are all subsets of the same community. Whittaker noticed this, and suggested the index
to be found from pairwise comparison of sites. If the number of shared species in two sites is
a, and the numbers of species unique to each site are b and c, then ᾱ = (2a + b + c)/2 and
S = a+ b+ c, and index 22 can be expressed as:

β =
a+ b+ c

(2a+ b+ c)/2
− 1 =

b+ c

2a+ b+ c
(23)

This is the Sørensen index of dissimilarity, and it can be found for all sites using vegan function
vegdist with binary data:

R> beta <- vegdist(BCI, binary=TRUE)
R> mean(beta)

[1] 0.3399075
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There are many other definitions of beta diversity in addition to eq. 22. All commonly
used indices can be found using betadiver. The indices in betadiver can be referred to by
subscript name, or index number:

R> betadiver(help=TRUE)

1 "w" = (b+c)/(2*a+b+c)
2 "-1" = (b+c)/(2*a+b+c)
3 "c" = (b+c)/2
4 "wb" = b+c
5 "r" = 2*b*c/((a+b+c)^2-2*b*c)
6 "I" = log(2*a+b+c)-2*a*log(2)/(2*a+b+c)-((a+b)*log(a+b)+(a+c)*log(a+c))/(2*a+b+c)
7 "e" = exp(log(2*a+b+c)-2*a*log(2)/(2*a+b+c)-((a+b)*log(a+b)+(a+c)*log(a+c))/(2*a+b+c))-1
8 "t" = (b+c)/(2*a+b+c)
9 "me" = (b+c)/(2*a+b+c)
10 "j" = a/(a+b+c)
11 "sor" = 2*a/(2*a+b+c)
12 "m" = (2*a+b+c)*(b+c)/(a+b+c)
13 "-2" = pmin(b,c)/(pmax(b,c)+a)
14 "co" = (a*c+a*b+2*b*c)/(2*(a+b)*(a+c))
15 "cc" = (b+c)/(a+b+c)
16 "g" = (b+c)/(a+b+c)
17 "-3" = pmin(b,c)/(a+b+c)
18 "l" = (b+c)/2
19 "19" = 2*(b*c+1)/((a+b+c)^2+(a+b+c))
20 "hk" = (b+c)/(2*a+b+c)
21 "rlb" = a/(a+c)
22 "sim" = pmin(b,c)/(pmin(b,c)+a)
23 "gl" = 2*abs(b-c)/(2*a+b+c)
24 "z" = (log(2)-log(2*a+b+c)+log(a+b+c))/log(2)

Some of these indices are duplicates, and many of them are well known dissimilarity indices.
One of the more interesting indices is based on the Arrhenius species–area model

Ŝ = cXz (24)

where X is the area (size) of the patch or site, and c and z are parameters. Parameter c is
uninteresting, but z gives the steepness of the species area curve and is a measure of beta
diversity. In islands typically z ≈ 0.3. This kind of islands can be regarded as subsets of the
same community, indicating that we really should talk about gradient differences if z ' 0.3.
We can find the value of z for a pair of plots using function betadiver:

R> z <- betadiver(BCI, "z")
R> quantile(z)

0% 25% 50% 75% 100%
0.2732845 0.3895024 0.4191536 0.4537180 0.5906091

The size X and parameter c cancel out, and the index gives the estimate z for any pair of
sites.

Function betadisper can be used to analyse beta diversities with respect to classes or factors.
There is no such classification available for the Barro Colorado Island data, and the example
studies beta diversities in the management classes of the dune meadows (Fig. 6):
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Figure˜6: Box plots of beta diversity
measured as the average steepness (z) of
the species area curve in the Arrhenius
model S = cXz in Management classes
of dune meadows.

R> data(dune)
R> data(dune.env)
R> z <- betadiver(dune, "z")
R> mod <- with(dune.env, betadisper(z, Management))
R> mod

Homogeneity of multivariate dispersions

Call: betadisper(d = z, group = Management)

No. of Positive Eigenvalues: 12
No. of Negative Eigenvalues: 7

Average distance to centroid:
BF HF NM SF

0.3080 0.2512 0.4406 0.3635

Eigenvalues for PCoA axes:
PCoA1 PCoA2 PCoA3 PCoA4 PCoA5 PCoA6 PCoA7 PCoA8 PCoA9

1.6547 0.8870 0.5334 0.3744 0.2873 0.2245 0.1613 0.0810 0.0652
PCoA10 PCoA11 PCoA12 PCoA13 PCoA14 PCoA15 PCoA16 PCoA17 PCoA18
0.0353 0.0183 0.0040 -0.0042 -0.0194 -0.0369 -0.0429 -0.0536 -0.0602
PCoA19
-0.0828

6. Species pool
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6.1. Number of unseen species

Species accumulation models indicate that not all species were seen in any site. These unseen
species also belong to the species pool. Functions specpool and estimateR implement some
methods of estimating the number of unseen species. Function specpool studies a collection
of sites, and estimateR works with counts of individuals, and can be used with a single site.
Both functions assume that the number of unseen species is related to the number of rare
species, or species seen only once or twice.

Function specpool implements the following models to estimate the pool size Sp:

Sp = So +
f21
2f2

Chao (25)

Sp = So + f1
N − 1

N
1st order Jackknife (26)

Sp = So + f1
2N − 3

N
+ f2

(N − 2)2

N(N − 1)
2nd order Jackknife (27)

Sp = So +

So∑
i=1

(1− pi)N Bootstrap (28)

Here So is the observed number of species, f1 and f2 are the numbers of species observed once
or twice, N is the number of sites, and pi are proportions of species. The idea in jackknife
seems to be that we missed about as many species as we saw only once, and the idea in
bootstrap that if we repeat sampling (with replacement) from the same data, we miss as
many species as we missed originally.

The variance estimators of Chao is:

s2 = f2

(
G4

4
+G3 +

G2

2

)
, where G =

f1
f2

(29)

The variance of the first-order jackknife is based on the number of “singletons” r (species
occurring only once in the data) in sample plots:

s2 =

(
N∑
i=1

r2i −
f1
N

)
N − 1

N
(30)

Variance of the second-order jackknife is not evaluated in specpool (but contributions are
welcome). For the variance of bootstrap estimator, it is practical to define a new variable
qi = (1− pi)N for each species:

s2 =

So∑
i=1

qi(1− qi) + 2
∑∑

Zp, where

Zp = . . .

(31)

The extrapolated richness values for the whole BCI data are:

R> specpool(BCI)
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Species chao chao.se jack1 jack1.se jack2 boot
All 225 236.6053 6.659395 245.58 5.650522 247.8722 235.6862

boot.se n
All 3.468888 50

If the estimation of pool size really works, we should get the same values of estimated richness
if we take a random subset of a half of the plots (but this is rarely true):

R> s <- sample(nrow(BCI), 25)
R> specpool(BCI[s,])

Species chao chao.se jack1 jack1.se jack2 boot boot.se n
All 203 227 12.96148 226.04 8.022369 237.54 213.6789 4.123431 25

6.2. Pool size from a single site

The specpool function needs a collection of sites, but there are some methods that estimate
the number of unseen species for each single site. These functions need counts of individuals,
and species seen only once or twice, or other rare species, take the place of species with low
frequencies. Function estimateR implements two of these methods:

R> estimateR(BCI[k,])

10
S.obs 94.000000
S.chao1 129.000000
se.chao1 17.243915
S.ACE 132.601934
se.ACE 6.153456

Chao’s method is similar as above, but uses another, “unbiased” equation. ace is based on
rare species also:

Sp = Sabund +
Srare
CACE

+
a1

CACE
γ2 where

CACE = 1− a1
Nrare

γ2 =
Srare
CACE

10∑
i=1

i(i− 1)a1
Nrare − 1

Nrare

(32)

Now a1 takes the place of f1 above, and means the number of species with only one individual.
Here Sabund and Srare are the numbers of species of abundant and rare species, with an
arbitrary upper limit of 10 individuals for a rare species, and Nrare is the total number of
individuals in rare species.

The pool size is estimated separately for each site, but if input is a data frame, each site will
be analysed.

If log-normal abundance model is appropriate, it can be used to estimate the pool size. Log-
normal model has a finite number of species which can be found integrating the log-normal:

Sp = Sµσ
√

2π (33)
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where Sµ is the modal height or the expected number of species at maximum (at µ), and
σ is the width. Function veiledspec estimates this integral from a model fitted either with
prestondistr or prestonfit, and fits the latter if raw site data are given. Log-normal model
may fit poorly, but we can try:

R> veiledspec(prestondistr(BCI[k,]))

Extrapolated Observed Veiled
109.06813 94.00000 15.06813

R> veiledspec(BCI[k,])

Extrapolated Observed Veiled
121.08212 94.00000 27.08212

6.3. Probability of pool membership

Beals smoothing was originally suggested as a tool of regularizing data for ordination. It
regularizes data too strongly, but it has been suggested as a method of estimating which
of the missing species could occur in a site, or which sites are suitable for a species. The
probability for each species at each site is assessed from other species occurring on the site.

Function beals implement Beals smoothing:

R> smo <- beals(BCI)

We may see how the estimated probability of occurrence and observed numbers of stems relate
in one of the more familiar species. We study only one species, and to avoid circular reasoning
we do not include the target species in the smoothing (Fig. 7):

R> j <- which(colnames(BCI) == "Ceiba.pentandra")
R> plot(beals(BCI, species=j, include=FALSE), BCI[,j], main="Ceiba pentandra", xlab="Probability of occurrence", ylab="Occurrence")

About this version:

Id: diversity-vegan.Rnw 2346 2013-01-07 11:42:36Z jarioksa processed with vegan 2.0-7 in R
Under development (unstable) (2013-03-19 r62316) on March 19, 2013
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Figure˜7: Beals smoothing for Ceiba
pentandra.
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