
Not so Homoiconic
EuroClojure 2012

Christophe Grand @cgrand



Source tooling is hard



Source tooling should 
not be a bunch of 

regexes



Source tooling?
• Basis of refactoring and assistants

• Extracting fns

• Maintaining ns forms and project.clj

• Scaffolding defrecord/deftype/...

• paredit

• ...

• Source-as-text to source-as-text 
transformations



It’s the fault of 
homoiconicity!



What would a Java 
toolsmith do?*

*given enough money and time



org.eclipse.jdt.core.dom

• Bite the bullet

• 8 interfaces and 112 classes for code

• 1 interface and 6 classes for 
transformations



And it works!
But nobody wants to write new transfos



What would a Clojure 
toolsmith do?



(-> src read 
transform pprint)



And it works!*
And anybody can write new transforms



And it works!*
And anybody can write new transforms

*As long as you are a compiler



WYSINWTRS
What You See Is Not What The Reader See



The reader ate my 
layout!



;; 2. collect new rules
(extend-protocol RuleFragment
  ;; a ref to another rule: add support for + ? or 
* suffixes
  clojure.lang.Keyword
    (unsugar [kw]
      (if-let [[_ base suffix] (re-matches #"(.*?)
([+*?])" (name kw))] 
        (unsugar [(keyword base) (keyword 
suffix)])
        kw))
    (collect [this unspaced top-rulename]
      nil)
    (develop [this rewrite space]
      [[this]])
    
  ;; a vector denotes a sequence, supports postfix 
operators :+ :? and :*
  clojure.lang.IPersistentVector
    (unsugar [this]
      (reduce #(condp = %2 
                 :* (conj (pop %1) #{[] (Repeat+. 
(peek %1))}) 
                 :+ (conj (pop %1) (Repeat+. (peek 
%1)))
                 :? (conj (pop %1) #{[](peek %1)})
                 (conj %1 (unsugar %2))) [] this))
    (collect [items unspaced top-rulename]
      (mapcat #(collect % unspaced top-rulename) 
items))
    (develop [items rewrite space]
      (reduce #(for [x (rewrite %2 space) sp space 
xs %1] 
                 (concat x (and (seq x) (seq xs) 
sp) xs))
        [()] (rseq items))))

(extend-protocol
 RuleFragment
 clojure.lang.Keyword
 (unsugar
  [kw]
  (if-let
   [[_ base suffix] (re-matches #"(.*?)
([+*?])" (name kw))]
   (unsugar [(keyword base) (keyword suffix)])
   kw))
 (collect [this unspaced top-rulename] nil)
 (develop [this rewrite space] [[this]])
 clojure.lang.IPersistentVector
 (unsugar
  [this]
  (reduce
   (fn*
    [p1__5950# p2__5949#]
    (condp
     =
     p2__5949#
     :*
     (conj (pop p1__5950#) #{[] (Repeat+. (peek 
p1__5950#))})
     :+
     (conj (pop p1__5950#) (Repeat+. (peek 
p1__5950#)))
     :?
     (conj (pop p1__5950#) #{[] (peek p1__5950#)})
     (conj p1__5950# (unsugar p2__5949#))))
   []
   this))
 (collect
  [items unspaced top-rulename]
  (mapcat
   (fn* [p1__5951#] (collect p1__5951# unspaced 
top-rulename))
   items))
 (develop
  [items rewrite space]
  (reduce
   (fn*
    [p1__5953# p2__5952#]
    (for
     [x (rewrite p2__5952# space) sp space xs 
p1__5953#]
     (concat x (and (seq x) (seq xs) sp) xs)))
   [()]
   (rseq items)))



Meikel (VimClojure)



Laurent (Counterclockwise)



The reader ate my layout
• Indentation/whitespaces

• Comments

• Maps and sets orderings

• Metadata (shortcuts and 
«stacks»)

• ::autoresolving/keyword 

• ` ~ and ~@

• #(%1 %2)

• @ #’

• 0xFFFF, 42/8

• \u00E8 (\è)

• ...



But it’s *this* close!
It’s unreadable but it works!



Spoiled kids devs!

• Macros/sexprs transforms are easy

• Structural transforms should be as easy!

• Nobody wants to deal with JDT-like 
complexity

• We (I?) want macro coziness but 
character-perfect transformations! To have a cake and eat it



Structural transforms

• Provide a function of sexprs to sexprs

• Macro-like

• But transform the source (as text)

• Preserve layout



What can be done?



Option 1: the reader

• A reader which keeps everything

• Either it doesn’t really keep everything

• Still qualify as homoiconic? (parser)

• Anyway, the complexity is passed down 
to the transformation writer



Option 2: the language

• Forbid some of the problematic stuff

• Shoehorn the remaining in language and or 
convention

• Example : reclaim ^"string" 
from ^{:tag "string"} to ^{:doc "string"}
to replace comments



Option 3: 
Admit it, we have a 

view-update problem!



View-update problem

• A database thing

• How to update the table when the view is 
updated?

• Qualify a whole range of problems

• GUI

• File sync

• Benjamin C. Pierce’s work on Unison 
and bidirectional programming



YAVUP
Yet Another View Update Problem

How to update the table when the view is 
updated?



YAVUP
Yet Another View Update Problem

How to update the table when the view is 
updated?

source text



YAVUP
Yet Another View Update Problem

How to update the table when the view is 
updated?

source text read value



View update

The View Update Problem

I We apply a function to transform source to target

I Someone updates target

I We must now “translate” this update to obtain an
appropriately updated source

S T

Updated

T
Updated

S
 

       



The View Update Problem

I We apply a function to transform source to target

I Someone updates target

I We must now “translate” this update to obtain an
appropriately updated source

S T

Updated

T
Updated

S
 

       

recombine old S with new T

read is not bijective



The View Update Problem: Terminology

Let’s call the function from source to target get and the other
putback. The two functions together form a lens.

S 
(source structures)

T
(target structures)

       

get

putback

 

lens

Bidir programming

• Introduce lenses

• Lens are composable

• Interesting idea

• Plus Pierce studied the case of tree 
transformations!



Lenses all the way down

• Defining a view = combining lens into a 
bigger lens

• Define a view, get the putback for free!



Overthinking it
but the putback fn is a good idea



Let be pragmatic

• The «get» function isn’t going to change

• It’s the reader!

• No need for lenses and lens combinators

• «putback» is the real good idea

• Let’s handcraft the «putback» function
(defn putback [expr src-as-txt] ...)



Master Plan

• Source -> parse tree

• Parse tree -> expr + translation log

• Expr -> Expr2

• Expr2 + translation log -> Parse tree 2

• Parse tree 2 -> Source 2



Master Plan

• Source -> parse tree

• Parse tree -> expr + translation log

• Expr -> Expr2

• Expr2 + translation log -> Parse tree 2

• Parse tree 2 -> Source 2

Done!



Master Plan

• Source -> parse tree

• Parse tree -> expr + translation log

• Expr -> Expr2

• Expr2 + translation log -> Parse tree 2

• Parse tree 2 -> Source 2

Done!

Easy!



Master Plan

• Source -> parse tree

• Parse tree -> expr + translation log

• Expr -> Expr2

• Expr2 + translation log -> Parse tree 2

• Parse tree 2 -> Source 2

Done!

Easy!

User!



Master Plan

• Source -> parse tree

• Parse tree -> expr + translation log

• Expr -> Expr2

• Expr2 + translation log -> Parse tree 2

• Parse tree 2 -> Source 2

Done!

Easy!

User!

Putback



Master Plan

• Source -> parse tree

• Parse tree -> expr + translation log

• Expr -> Expr2

• Expr2 + translation log -> Parse tree 2

• Parse tree 2 -> Source 2

Done!

Easy!

Easy!

User!

Putback



Parse tree vs sexpr
(z (a
    b)) (c
         d)

(z (a b)) (c d){:tag :net.cgrand.parsley/root,
 :content
 [{:tag :list,
   :content
   ["("
    {:tag :symbol, :content 
[{:tag :name, :content ["z"]}]}
    {:tag :whitespace, :content [" "]}
    {:tag :list,
     :content
     ["("
      {:tag :symbol, :content 
[{:tag :name, :content ["a"]}]}
      {:tag :newline, :content ["\n"]}
      {:tag :whitespace, :content ["    
"]}
      {:tag :symbol, :content 
[{:tag :name, :content ["b"]}]}
      ")"]}
    ")"]}
  {:tag :whitespace, :content [" "]}
  {:tag :list,
   :content
   ["("
    {:tag :symbol, :content 
[{:tag :name, :content ["c"]}]}
    {:tag :newline, :content ["\n"]}
    {:tag :whitespace, :content ["         
"]}
    {:tag :symbol, :content 
[{:tag :name, :content ["d"]}]}
    ")"]}]}



Translation log

• For each node of the parse-tree

• remember the corresponding expression



Translation log

• For each node location of the parse-tree

• remember the corresponding expression

• Locations allow to look around

• find comments, indentation...



Record translation log

• Translation is straightforward

• Define the translation function as being 
^:dynamic

• Rebind it to a logging self!

• Beware of laziness  



Translation log

• Scanned to find the closest parse-tree node 
corresponding to an expression

• Prefer identity over value

• Some similarity heuristics may be added

• When not found, render the expression 
using a default algorithm 

• pprint?



Indentation

• Locations give the whole context

• Allow to compute indentation

• Allow to adjust the indentation of code 
based on new context



Control freak

• Some transformations are only about 
layout

• Just work directly on the parse tree

• Mixed transformations should be 
decoupled:

• Structural transformations

• Layout transformations



Demo



To be continued

• Similarity heuristics to recover more layout 
on updated nodes

• Support of range operations

• Support for splicing (unwrap)

• Integration in IDEs

• Counterclockwise for a start

• Standalone backend



Thank you!

Christophe Grand @cgrand


